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1. I n t r o d u c t i o n  

A Poisson structure { , } on a mani fo ld  M is a Lie algebra structure on C ~c (M) satisfying 

the Leibniz  identity: 

{ fg ,  h} + {f,  h}, g + f { g ,  h, }, V.f, g, h c C a ( M ) .  

Alternat ively it can be given by a contravariant  skew-symmetr ic  2-tensor P such that 

[P,  P]  = 0, where [ , ] stands for the Schouten bracket. In local coordinates the Poisson 

tensor P can be writ ten in the form 

8 O 
P = Z {xi, xj } Oxi /x . 

l<_i<j<n Oxj 
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Using Weinstein's splitting theorem [6], the local study of P can be reduced to zero rank 

points, which translates into the following local expression for P: 

n 8 0 
P = Y ~  E CkXk OXi A 0---~j "~ higher order terms. 

l<i<j<n k=l  

The numbers C~ are the structure constants of  a Lie algebra and they sometimes determine 
the possibility of  bringing P to a (local) linear form 

~"~ C~ Yk o-fi m -- , 
l <i <j<n k= l  Oyj 

through a smooth or analytic change of coordinates. P is then said to be linearizable. In 

this context a Lie algebra is said to be (smoothly or analytically) nondegenerate if every 
Poisson tensor associated with it in the above way is (smoothly or analytically) linearizable. 

For example, semisimple Lie algebras are analytically nondegenerate (see [2,6]). 

We classify, in terms of both the smooth and analytic nondegeneracy,  all the Lie algebras 
of  dimension higher than 3 whose connected and 1-connected Lie group has only zero- and 

two-dimensional coadjoint orbits (such Lie algebras will be called nice and an exhaustive 
list of  them can be found in [1]). We conclude that, apart from the already known cases 

(those to which the results of  Weinstein [6] and of Dufour [4] apply), all these Lie algebras 
are degenerate in both the smooth and analytic category. The proof is constructive, i.e., we 

associate a nonlinearizable Poisson structure to every Lie algebra ~ being studied. This is 
done by perturbing the Lie-Poisson tensor in g* with second order terms in such a way that 

higher dimensional symplectic leaves appear around the singular point. This technique was 

used by Weinstein [7] to prove that noncompact semisimple Lie algebras of  real rank at 
least 2 are smoothly degenerate. 

Notation. We follow the notation in [1] for the nice Lie algebras. These are, up to a direct 
sum with a central ideal: 
1. type (i) - ~o(3) or ~l(2, •); 

2. type (ii) - RT + a, where a is an abelian ideal and the action of T on a is by an 
endomorphism of a; 

3. type (iii) - RT + ~, where ~ is the three-dimensional Heisenberg algebra spanned by 
X, Y, Z with [X, Y] = Z and either 

or 

[T, X] = Y, [T, Y] = --X, [T, Z] = 0 

[T, X] = X, [T, Y] = - Y ,  [T, Z] = 0; 

4. type (iv) - g is six-dimensional with basis Xi, Yi, 1 < i < 3 and the nonvanishing 
brackets are 

[XI ,  X2] = Y3, [X2, X3] = YI, IX3, XI]  = Y2; 



I. Cruz~Journal of Geomet~. and Physics 31 (1999) 51~53 53 

5. t y p e ( v ) - ~ i s  five-dimensional with basis X i , 1  < i < 3, Yj, 1 < j < 2 and the 

multiplicative law reads 

IX1, X2] : X3, [XI,  X3] = Y1, [X2, X3] : Y2. 

The Lie-Poisson tensors in the dual of  any of  these Lie algebras will be denoted by Lie-  

Poisson tensor o f  type (i)-(v). 

The main result is the following: 

Theorem 1. Let .q be a nice Lie algebra such that dim ~ > 4. Then .q is smoothly and 

analytically degenerate except i f~ = 40(3) • E or ~ = ~l(2, R) • E. 

We restrict ourselves to the case where the dimension of  ~ is at least 4, since the three- 

dimensional case was done by Dufour [3]. The proof  of  Theorem 1 can be found in Section 5. 

2. Raising the rank of Poisson structures 

Definition 1. A Lie algebra is said to be nice if  the coadjoint orbits of  its connected and 

1-connected Lie group have dimension 0 or 2. 

Definition 2. Let P be a Poisson tensor on a manifold M. Then P is said to be nice if  its 

symplectic leaves have dimension 0 or 2 and not nice at a singular point if  it has symplectic 

leaves of dimension at least 4, in some set whose closure contains the singular point. 

We start with a nice Lie algebra (8, [ , ]), or equivalently with a nice Lie-Poisson tensor 

P on V = .q*. We want to perturb P with second order terms so that symplectic leaves of  

higher dimension appear in any neighbourhood of the origin. Let (xl . . . . .  x,~) (with n > 4) 

be linear coordinates on V and P be a linear Poisson tensor on V. Then the expression of 

P in the basis 

Oxi A O~j I<i<j<n 

is linear. Let Q be an alternating contravariant 2-tensor whose expression in the above basis 

is quadratic. Then P '  = P + Q is said to be a quadratic perturbation o f  P. Such P '  will 

be a Poisson tensor if and only if  

[ P + Q , P + Q ] = O ,  

where [ , ] stands for the Schouten bracket. Equivalently 

[ P , Q ] = 0  and [ Q , Q ] = 0 .  (1) 

The last equation means that Q itself is a Poisson tensor. Our goal is then to find a quadratic 

Poisson tensor Q such that [P,  Q] = 0 and P + Q is not nice at the origin. 
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3. Lie--Poisson tensors of type (ii) 

In this section we build nonlinearizable perturbations of  the Lie-Poisson tensors of type 

(ii). This shows that Lie algebras of  type (ii) are smoothly and analytically degenerate. We 

recall that a Lie algebra of  type (ii) is the semidirect sum of  ~ and an n-dimensional  abelian 

ideal a, where the action of  ~ on a is by an endomorphism E of  a. We will denote such Lie 

algebra by rE.  The Lie-Poisson tensor on f ~  will be denoted by L e .  

Let {t} be a generator of g~ and {xl . . . . .  xn } be any basis for a. Then the bracket relations 

in fiE are 

[t, xi] = E(xi) and [xi,xj] = O. 

Identifying the basis {t, Xl . . . . .  Xn } for fE with a system of  coordinates for its dual we can 

write the Lie-Poisson tensor LE as 

n 0 0 
LE = Z E(xi) Ot A Ox--~" (2) 

i=1  

R e m a r k .  Dufour [3] has worked with this family of  Lie algebras, which he divided into 

two subfamilies: the subfamily of  nonresonant and that of  resonant Lie algebras, which 
correspond, respectively, to the case where the eigenvalues of  E are nonresonant and 

resonant. Dufour proved that resonant Lie algebras are smoothly degenerate and that three- 

dimensional nonresonant ones are smoothly nondegenerate. We will prove that in dimension 

higher than 3 all the Lie algebras fE are smoothly and analytically degenerate. 

T h e o r e m  2. Let E : a ~ a be a nonzero endomorphism of  a and suppose that dim a > 3. 

Then there exists a quadratic perturbation Of L E which is not nice at the origin. 

Proof.  Following [5] we know that a can be decomposed as a direct sum of  invariant spaces 

(under E)  of  minimum dimensions. We call these subspaces irreducible. Furthermore, 

we know how E acts on each of  these subspaces. We will consider a slightly different 

decomposit ion for a which will make our proof  easier: 

a = CI 0 ~ a l  ~ " ' "  ~ a k ,  (3) 

where al . . . . .  a~ are irreducible subspaces of  dimension greater than 1 and 

o' r a o = a  @ . . . @ a  o, 

i is an invariant one-dimensional subspace (we remark that a0 can be nonex- where each a 0 

istent). Then we know that there exists a basis for a such that the action of  E on a0 is 

represented by the matrix 

m o  ~ " ' .  ~ 

Xr 
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and the action of  E on each of  the subspaces ctl . . . . .  ak is represented by one of  the two 

matrices 

1 X 
M ~ . . 

1 X 

M '  = 

o r  

(; 
(; 0) (; 

for convenient real numbers XI . . . . .  ,kr, )~, C¢ and ¢~, where fl # 0 (blank entries correspond 

to null entries). 

Now consider decomposit ion 3 for a. The map E : a ~ a is just  the product map (in the 

usual sense) of  E0, E1 . . . . .  Ek, where Ei stands for the restriction of E to ai. The tensor 

LE is the tensor which, in coordinates x i for c~i, is written as 

LE(X ° . . . . .  x k) = LEo(X °) + . . .  + LEk(xk) .  

We will prove the theorem in two steps. In the first step we produce perturbations for L t: 

in the case E is represented by one of  the matrices M0, M or M' .  In the second step we 

show how to build a perturbation corresponding to the action of E on fli • f~j by "adding" 

perturbations which correspond to the actions of  E on ai and aj.  We then show that the 

perturbation built in this way is not nice. [] 

3.1. Perturbations o f  the tensors associated with Mo, M and M'  

L e m m a  1. Let E be represented by the matrix Mo. Then we can f ind Q E such that L E + Q I,: 

is a quadratic perturbation Of LE. Furthermore the perturbation can be chosen to be not 

nice at the origin unless r <_ 2 or all the X's are zero. 

Proof.  Assume that r _> 2 and let (xl . . . . .  Xr) be the basis for a such that E is represented 

by/14o. This means that 

,---,r 0 0 

a x---~, " o g  

i=1 

Let 

0 a 

)Tx  Q E = a(x  A Ox2 
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where a is some quadratic function. Then, QE is a Poisson tensor and the equation [LE, 

QE] = 0 is equivalent to 

3a 3a 
(~'1 + X2)a = ~.lXl ~ + ' ' '  + ~.rXr OX r • 

This is a partial differential equation which is singular at the origin so that Canchy-  

Kowalevsky's  theorem does not apply. However, because we are interested in quadratic 

solutions of  this equation we find easily a solution to be a(x) = Axt x2, producing 

QE = AXlX2 OXl /~ 3x2 

It is easy to check that L E + QE has four-dimensional symplectic leaves in any neighbour- 

hood of  the origin as long as one of  X3 . . . . .  Zr is nonzero. This can always be achieved by 

changing the order of  the elements in the basis unless all Zi 's  are zero or r = 2. In those 

cases we will be left with zero- and two-dimensional symplectic leaves. 

In the case r = 1 we are forced to consider a different QE. We choose 

3 3 
Q E = A x 2 - -  /x - - .  [] 

Ot Ox 

L e m m a  2. Let E be represented by the matrix M. Then there exists a quadratic perturbation 

L E + Q E Of L E which is not nice if r >_ 3 and nice otherwise. 

Proof .  As before let (xl . . . . .  Xr) be the basis where E is as in M, and let 

2 0 0 
- -  A - - .  QE = Axr OXl Ox2 

Again QE is a Poisson tensor and the equation [LE, QE] = 0 is satisfied. Furthermore, if 

r > 3, then LE + QE is not nice at the origin except in the case ~. = 0. In this case we 

consider QE to be 

2 O O 2 O 3 
- -  / N  - - .  

(Ax2x3 + Bx3)  OXl A Ox2 + A x  30Xl Ox3 

The perturbed tensor LE + QE is indeed not nice as long as A # 0. [] 

L e m m a  3. Let E be represented by M'. Then there is a quadratic perturbation L E + Q E 

of L E which, as long as r > 3, will raise its rank. 

Proof.  It is easy to see that 

O 0 
QE 2 X 2 ) 7  = A(Xr_ 1 + A - -  

OX2 

produces the desired perturbation. This solution does raise the rank of LE as long as r > 3. 
[] 



I. Cruz~Journal of Geometo, and Physics 31 (1999) 51~ 3 

3.2. Perturbations associated to a general endomorphism 

57 

The following lemma will guarantee that we can "add" perturbations in order to produce 

perturbations. 

Lemma 4. Let (x', Xm, x") = (Xl,. . . . . .  , Xm, , x , )  be an3' system of  coordinates in a 

manifold M and let P and Q be any two Poisson tensors on M satisfying 

a 0 
P =  Z Pij(x ')  

l<i<j<m OXi OX[ 

and 

0 0 

m<r<s<n 

Then [ P, Q] = O. 

Proof. Just computational. [] 

Lemma 5. Let Ei : ai ~ ai and Ej : aj ~ aj be two endomorphisms o f  any of  the 

typesdescribedinLemmas l -3andcons ider theproduc tmap  Ei × Ej : ~ i ~ j  ~ aiGc[i (~" 

Ei and Ej. Then we can f ind a quadratic perturbation o f  the tensor associated with the map 

Ei × Ei whose quadratic terms do not depend on t. Furthermore, if dim ai + dim ai > 3, 

such a perturbation can be chosen to be not nice at the origin. 

Proof. Let (xl . . . . .  Xr) and ( Y l  . . . . .  YD be bases for ai and aj, respectively, as in 

Lemmas 1-3. Let QE~ and QEj be as in those lemmas and let 

P' (x, y) = LEi(X) + QE, (X) + LEj(y)  + QEj (Y). 

We recall that 

L(x ,  y) = LEi (x) + LEj (y) 

is the tensor associated with the product map Ei x Ej. We show first that P '  is a Poisson 

tensor. Because L, LEg + QEi and LEj + QEj are Poisson tensors this amounts to showing 

that 

[LEi, QEi] = [LEj, QEi] = [QEi, QEj] = O. 

Each of these Schouten brackets vanishes as a consequence of Lemma 4 (take Xm = t 

in that lemma). Furthermore the perturbation P '  just built for the tensor associated with 

E = Ei x Ei is again of the type 

LE(X, y) + QE(X, y) 

and therefore Lemma 4 shows that the induction process can go on. 
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We now show that the dimension of the symplectic leaves is as stated. If  r > 3 or s > 3 

then one of  the Lemmas 1-3 makes sure that this is the case. We are left with the cases 

(r, s) = (1, 2) and (r, s) = (2, 2) (the first producing two cases and the second producing 

three cases). The matrices which represent the product map in these five cases, together 

with the corresponding perturbations are as follows: 

1 

1 )~ 

at 

-~)ot ' 

a 2 a a 
QE = Ax2 ff--~ A Ox -k- By 2 ayl ay2' 

a 8 8 8 
QE = Ax2at max  4- B(y 2 4- Y2) ayl ay2 '  

ot 

Ol 

:) 
Y - ~ )  ' 

y 

8 O 2 a 8 
= ax--7 " ax--7 + 8(y  + y2)aTy l A - -  ay2 ' 

8 a a a 
QE = A x I x 2 - ~ x  1 A aX2 + B(y~ + y2) ayl aye' 

o o 
QE = A(x 2 + x 2) Ox----~ A ax----2 

2 O O 
+ myl + y 2 ) = -  A 

oy---7 " Oyl 

It is easy to see that in all five cases the real numbers A and B can be chosen so that the 

perturbation is not nice. This concludes the proof  of  the lemma. 

It also concludes the proof  of  the theorem, since from one step to the other the essential 

properties of  the tensors involved are preserved. [] 

4. Nice tensors admitting Casimir functions 

Let P be a nice Lie-Poisson tensor on a vector space V which admits a coordinate 

function (say xn) as a Casimir function. This is the case of  the tensors of  type (iii)-(v). We 

will consider simpler perturbations P + Q of  P by taking Q to be of  the form Xn L, with L 

a Lie-Poisson tensor. 

L e m m a  6. Let P and L be nice Lie-Poisson tensors on V and xn a Casimir function for 
P. Then P + xn L is a Poisson tensor if and only if [ P , L] = O. 

Proof.  Using properties of  the Schouten bracket we can write 

[P + xnL, P + xnL] = [P,  P]  + 2[P,  xnL] + [xnL,xnL]. 
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Now [P, P] = 0 since P is a Poisson tensor and 

[x,,L, xnL ] = x2[ L, L] - 2xnL Z (dxn) /X L. 

Again [L, L] = 0 and the fact that L is nice implies that L~(dx,,)/x L = 0, so that 

[P + xnL,  P + xnL] = 2[P,  x,,L] = 2xn[P, L] - 2PZ(dxn)/X L. 

The conclusion follows using the fact that Xn is a Casimir function for P. [] 

59 

We consider now the problem of raising the rank of  P. 

L e m m a  7. Let P and L be as in the previous lemma and suppose that 

1. [P, L] = O; 

2. there is a subset U of  V, whose closure contains the origin, where the following condi- 

tions hold." 

(a) im (pz )  N im (L:)  = {0}; 

(b) ker(P ~) # ker(L~). 

Then the tensor P + Xn L is not nice at the origin. 

Proof. First we remark that, if L is any nontrivial Lie-Poisson tensor, then the set 

Mo(L) = {p 6 V: rank(L)p = 0} 

is a hyperplane of  codimension at least 1. Since both P and L are in these conditions, and 

furthermore they are nice, then this implies that in any neighbourhood of  the origin, there 

is a point p such that 

rank(P) t, = 2 and rank(L)p = 2. 

Furthermore we can choose p such that xn (p) 5~ 0. The hypothesis on the image of P and 

L then implies that 

ke r (P :  + xnLZ)p = ker Pp~ O ker L~). 

Since both ker Pp~ and ker L~ have codimension 2, the hypothesis on the kernel of P~ and 

L z implies that ker(P ~ + xnLT")p has codimension 4, which concludes the lemma. [] 

Our goal is now to find L such that conditions 1, 2(a) and 2(b) of Lemma 7 hold. 

4.1. Choice o f  L 

We will choose L from the Lie-Poisson tensors of  type (ii), as this will give us some free- 

dom to choose (by choosing the endomorphism E). We will keep the notation of  Section 3 

for such L and denote it by LE.  We first write LE in a coordinate free way. Let V be the 

vector space which is the base space for P. Then a Lie algebra .qe of type (ii) on V* is 
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determined by ot e V, z 6 V* (with z(ot) # 0) and E a nonzero endomorphism of ker(ot), 

in the following sense: 

ge = ~z + ker(ot), (4) 

where the action of  z on ker(ot) is by the endomorphism E. Our objective is to show that 

there exist c~, z and E such that the Lie-Poisson tensor LE satisfies conditions 1, 2(a) and 

2(b). Let fl = {Xl . . . . .  Xn} be a basis for V and (Xl . . . . .  xn) be coordinates in that basis. 

We write ~ as CtlXl + ".. + OlnXn and assume that oq 5~ 0. Assuming furthermore that 

z(a)  = 1, the expression of  LE in x-coordinates is given by 

and 

LE(dXl ,  dxi)  = E ( ~ l X i  - OtiXl) 

Ol i Olj 
LE(dXi,  dxj )  = - -E(Ot lX j  - otjXl) - - -E(Ot lXi  - -  OtiXl ), 

Oll Oll 

where j > i > 1. Now let u and v be two generators for the image of  P~. Condition 2(a) 

is equivalent to saying that u and v form a free system together with the vector fields 

0 0 0 0 ! 
- -  and v t • - t~,z) OXn = E(x l  - a l Z ) ~ x  1 + . . +  E ( x ,  U : O l l ~ x l  - [ - ' ' ' "~-~nOxn 

(see Lemma A.1 in Appendix A for the details). 

We now remark that for fixed ot and z it is easy to find an endomorphism E such that 

equation [P, L] = 0 holds. Conditions 2(a) and 2(b) merely restrict the field of  those solu- 

tions. We choose t~ = X1 and z = xl so that LE(dxi ,  dxj )  will be zero for all j > i > 1 

and u'  and v I will be given by 

0 0 0 
u'  = 0xl and v' = E ( x 2 ) ~ x  2 + . - .  + E(xn)--.0Xn 

Using these simplifications the problem of finding LE is easily solved. The results can be 
found in Table 2. 

In Table 1 we present (up to an isomorphism of coordinates in the base space V) the 

generators for the image and kernel of  the nice Lie-Poisson tensors of  types (ii)-(v). For 

the tensor of  type (ii) we are using the just described choice of  a and z and we denote by 

E i  the function E ( x i ) .  We have also assumed that E :  5~ 0. This can always be achieved by 

permuting the coordinates (x2 . . . . .  Xn), unless E = 0. From this table it is easy to see that, 
taking LE to be of  type (ii), condition 2(b) holds automatically. The choice of  E that forces 

LE to satisfy conditions 1 and 2(a) can be found in Table 2. In that table we present the 

functions E2 . . . . .  En which determine the endomorphism E, where in (iv) one of  E4, E5 

or E6 is nonzero and in (v) one of  E4 or E5 is nonzero. This endomorphism, together with 

the just described choice of  a and z, determines the Lie algebra gE, and therefore the tensor 
L E. We can therefore conclude that 

T h e o r e m  3. Let P be one o f  the tensors P o f  type (iii), (iv) or (v) as denoted in [1]. Then 

there is a nice tensor L E o f  type (ii) such that P + XnL E is not nice at the origin. 
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Table 1 

Generators for the image and kernel of some nice Lie-Poisson tensors 

61 

Type of Generators for 
tensor Image Kernel 

0 E 2 ~  + . . . + E n ~  (ii) ~.r--S" , . 

x ~ " o ~ (iii 2 ~  - x 4 ~ ,  x3,a.-~ -- x 4 ~  

x3 ~ o ° x ~ - x 4 ~ ,  x2~)T~- 4~T3 
x 0 x o ~¢ ?~ (iv) x 6 ~ -  4 ~ ,  6 ~ - - 5 ~  

x i~ 0 0 0 (V) 4&-~l -}-X5 .-~g- ~ . X33-~1 --X53.---~ 

E2 dxi  - Ei  dx2,  i = 3 . . . . .  n 

dx4, x4 dXl + ~2 dx2 + x3 d ,~  

dx4, x4 dXl q- x 3 dx2 q- x 2 dx3 

dx4, dxs ,  dx6, 

x4 dxl  q- x 5 dx2 -1- x 6 dx3 

dx4,  dx  5, 

x5 dXl - x 4 dx2 q- x 3 dx3 

Table 2 

Tensor L E of type (ii) to be associated with P 

Type of P Endomorphism E determining L L 

(iiil E2 = a2x2 q- a3x3 + a4x4 

E 3 = b2x  2 + b3x3 + b4x4 

E4 = (a2 + b3)x4 ~ 0 

(iv) E 2 = a2x  2 q- • . .  + a6x 6 

E3 = b2x2 + . . . + b6x6 

E4 = (a2 + b3)x4 
E5 = c4x4 q- c5x5 + c6x6 

E6 = d4x4 + dsx5  + d6x6 

(v) E2 = a2x2 + .  •. q- a5x5 

E 3 = b 2 x  2 q - . . . q - b S x  5 

E 4 : c4x  4 q - c 5 x  5 

E5 = (a2 + b3)x5 

5. Proof  of  the main theorem 

As proved in Theorems 2 and 3 the Lie algebras of types (ii)-(v) are degenerate in both 
the smooth and analytic category. In fact such theorems show that it is possible to perturb the 
Lie-Poisson tensor in the dual of these Lie algebras with second order terms in such a way 
that the perturbed tensor is no longer nice. This shows that such Lie algebras are degenerate 
in any category. Since abelian Lie algebras of dimension greater than 1 are degenerate, 
taking direct sums with central ideals will always produce a degenerate Lie algebra. This 
leaves us to classify 

~ o ( 3 ) @ N  and ~I(2, R ) @ N .  

The Lie algebra ~o(3) @ R is smoothly and analytically nondegenerate as a consequence 
of the theorem in [4]. Using the same result one concludes that 61 (2, E) @ R is analytically 
nondegenerate. It is, however, degenerate in the smooth sense since the Lie algebra ~l (2, E) 
is smoothly degenerate (see [6]). This concludes the proof of  Theorem 1. [] 
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Appendix A. Coordinate changes in the base space 

Let tp : M > N be a diffeomorphism between manifolds M and N, and suppose that 

P is a Poisson tensor on M. Then there exists a unique Poisson tensor Q on N making ~b 

into a Poisson diffeomorphism. Such tensor Q is given by 4), P,  the pushforward of  P by ~. 
Furthermore the image of  Q~ is just the pushforward by q~ of  the image of P~. In the case 

we are interested in, ~b is an automorphism of a vector space V. If  ~b is represented by the 

matrix A and the tensor matrix for P is M, then the tensor matrix for Q is just N = AMA T. 
Furthermore im(Q~) = A(im(P~)).  

L e m m a  A.1. Let V be a real vector space and let L E denote the Lie-Poisson tensor on 
the dual of the Lie algebra 

gE = ~z +E  ker(a).  

Then there exist coordinates x = (xl . . . . .  xn) in V such that 

LE(dxl, dxj) = E(alXj - -~ix l )  for j > 1 

and 

a i a j  
LE(dxi, dxj) = - - E ( a l x j  - -a jx l )  -- - - E ( a l x i  --aixl  f o r j  > i > 1. 

a l  a l  

Furthermore the image of L ~E is spanned by the vector fields 

0 0 c3 c3 
u = a l ~ + . . . + a n  and v = E ( X l - - O q z ) 7 - - - +  " + E ( x . - a n z )  

Oxn Oxn " oxl 

Proof. Let (xl . . . . .  xn) be coordinates in V such that xi (a) # 0. Then the following is a 
basis for ker(a) 

{Y2 . . . . .  Yn} = { ~ l X 2  - -  a 2 X l  . . . . .  ~lXn  -- ~nX l } ,  

where a i stands for x i ( a  ) .  We complete this basis with yl = ZlXI "]- " ' "  "+- ZnXn to get a 
basis for gE. In y-coordinates L is represented by the matrix 

M = 

0 - E ( y 2 )  . . . .  E ( y n ) l  
E(y2) 0 . . .  0 

E(yn) 0 ""  0 
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The  c h a n g e  o f  coord ina te s  tha t  takes  us  b a c k  to x coord ina tes  is g iven  by  A the  inverse  

ma t r ix  o f  

Zl g2 Z3 ' ' "  Zn / 
--0/2 0/1 0 "" • 0 

-0 /3  0 0/1 . . .  0 . 

--0/n 0 0 " • • 0/1 

This  is j u s t  

A = Il 
l --Z2 --Z3 

0/2 (1 - 0/2z2)/0/1 -0 /2g3/0/1  

0/3 --0/3Z2/0/1 ( l  - -  0/3Z3)/0/1 

n --0/nZ2/0/1 --0/nZ3/0/1 

• . - - 7  

"" - - ~ 2 ~ n / ~ l  

• ' --0/3 Zn/0/l 

• . (1 - 0/nz , , ) /0 / l  

) 
and a tedious but straightforward calculation will complete the proof of the lemma. [] 
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